Nº 32

Задача №3/1

а) Замена переменной.

$$\int \frac{x}{x^2 + 3} dx$$

б) Интегрирование дробей, алгебраические преобразования.

в) интегрирование по частям
$$\int (x-5)\cos 3x \, dx$$

$$\int \frac{x+3}{\sqrt{x^2-4x-12}} dx$$

Задача №3/2. Определенный интеграл.

Найти объем продукции, выпускаемый предприятием за один 10-часовой рабочий день, если скорость выпуска v(t) (производительность) задана следующей формулой:

$$V(t) = \begin{cases} -t^2 + 6t + 10, & 0 \le t \le 4\\ -6t + 50, & 4 \le t \le 8 \end{cases}$$

Задача №3/3. Дифференциальные уравнения.

а) Найти динамику цены P(t) на товар по заданным из статистики соотношениям, описывающим прогноз спроса D(t) и предложения S(t) при начальных условиях P(0) = 3 P'(0) = 1,5;

$$D(t) = 3p'' + 3p' + 8p - 5; S(t) = 2p'' - 1p' + 5p + 7;$$

б) Решить: линейное неоднородное дифференциальное уравнение y'' + 2y' + 5y = 2x + 5

Задача № 3/4. Метод наименьших квадратов для обработки статистических данных.

В результате исследования в автопарке зависимости между срокам эксплуатации автомобилей и расходами на их ремонт получены следующие статистические данные, сведённые в таблицу.

Т(лет)	1	2	3	4	5	6	7	8
S(ден.ед.)	100	120	145	160	185	-	-	-

Найти:аналитическую зависимость стоимости ремонта S от срока эксплуатации T; предполагаемую величину затрат на ремонт S (7) к (7)-му году эксплуатации.

Задача №4/1. Исследование операций. Линейное программирование.

Найти максимум и минимум линейного функционала $Y = 4x_1 + 6x_2$ при условиях

$$\begin{cases} 4x_1 + x_2 \ge 4 \\ x_1 - 4x_2 \le 0 \\ 2x_1 + 3x_2 \le 30 \\ x_1 \ge 0 \\ 0 \le x_2 \le 7 \end{cases}$$

Задача №4/2 Симплекс-метод

Торговое предприятие, располагающее материально-денежными ресурсами реализует три группы товаров. Плановые нормативы затрат ресурсов на единицу товарооборота (a_{ij}) , прибыль от продажи товаров на единицу товарооборота по статданным (c_i) , а также объемы ограничений ресурсов (b_i) сведены в таблицу.

Определить объем и структуру товарооборота так, чтобы прибыль торгового предприятия в целом была бы максимальной.

			X1	X2	Х3	
№ Виды материальных ресурсов		Единицы	Норма затрат ресурсов на ед.т/о,тыс.руб.			Объем ресурсов
п/п	виды материальных ресурсов	измерения	I гр.(ai1)	II гр.(ai2)	III гр.(ai3)	(bi)
1	Рабочее время продавцов	чел/час	2	1	3	600
2	Площадь торговых залов	M^2	1	2	1	500
3	Площадь складских помещений	\mathcal{M}^2	6	4	2	900
Единичная прибыль (Сј)		тыс. руб.	2	2	3	

Задача № 4/3. Транспортного типа.

На трех складах оптовой базы имеется груз в количествах соответственно 40, 80, 80 единиц. Этот груз необходимо перевезти в четыре магазина, каждый из которых заявил соответственно на 70, 20, 60 и 60 единиц. Стоимость доставки единицы груза (тарифы) из каждого склада Аі во все магазины Ві представляется матрицей:

1 опорный план

80 40 80 90 90

Составить оптимальный план перевозок грузов с минимальными транспортными затратами.

Задача № 4/4. Эластичность функции

Статистикой установлено, что цена на товар Р зависит от его количества Q

$$P = 320 - 10Q^3$$
 Определить, при каком его количестве он становится неэластичного спроса.