1. Найти производную y'_x данных функций.

a).
$$y = \frac{1}{\sqrt{3}} arctg \frac{x\sqrt{3}}{1-x^2}$$
; 6). $y = x^5 \sqrt{x^6 - 8}$; B). $y = \ln^3 \sin e^{x^2}$;

- г). $x \sin y \cos y + y^2 = 0$; д). $y = x^{tg2x}$
- 2. Найти $\frac{dy}{dx}$ и $\frac{d^2y}{dx^2}$ для данных функций.

a).
$$y = x\sqrt{1 + x^2}$$
; 6). $\begin{cases} x = 5 \cos t \\ y = 5 \sin t \end{cases}$

- 3. В конус с высотой H = 8см и радиусом основы R = 3см вписан в цилиндр. Найти тот, который имеет наибольший объём.
- 4. Найдите наименьшее и наибольшее значение функции z = f(x) на отрезке [a, b].

$$y = \frac{x^3}{2(1+x)^2}$$
, [-4; -2]

- 5. Задана функция $z = 2x^2 3xy + y^2 x$ и две точки $A(x_0; y_0)$ и $B(x_1; y_1)$. Нужно:
 - а). вычислить значение $z_0 = f(x_0; y_0)$ функции в точке A;
 - б). вычислить значение $z_1 = f(x_1; y_1)$ функции в точке В;
 - в). вычислить приближённое значение $\bar{z_1} = f(x_1; y_1)$ в точке B, исходя из значения z_0 в точке A, заменив приращение функции при переходе от точки A к точке B дифференциалом, оценить в % относительную погрешность, возникающую при замене приращения функции её дифференциалом; A(1; 2), B(0.98; 2.03)
- 6. Задана функция $z = \frac{x}{y^3} + \frac{y}{x^2}$, точка A(-2; 1) и вектор $\bar{a} = (i 2j)$. Найти:
 - a). *grad z* в точке A;
 - б). производную в точке A по направлению вектора \bar{a} .
- 7. Найти неопределённые интегралы

a).
$$\int \frac{x^3 dx}{\sqrt{7 - x^8}}$$
; 6). $\int \frac{3x + 2}{x^2 + 8x + 20} dx$; B). $\int \frac{(e^x + 5)e^x}{e^{2x} + 9} dx$.

8. Вычислить определённые интегралы

a).
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{3 + 2\cos x}$$
; 6). $\int_{1}^{e^{2}} x^{2} \ln x \, dx$; B). $\int_{0}^{2} \frac{x^{2} dx}{\sqrt{16 - x^{2}}}$;

9. Вычислить интегралы или установить их сходимость или расхождение.

a).
$$\int_{1}^{+\infty} \frac{dx}{x(1+x)}$$
; 6). $\int_{0}^{1} e^{\frac{1}{x}} \frac{dx}{x^2}$

- 10. a). Вычислить площадь, ограниченную кривыми: $y = 3x^2 + 1$, y = 3x + 7.
 - б). Найти длину дуги кривой $ho = 3(1 + \cos \varphi)$